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Abstract. The new accurate two-state quantum calculations of the inelastic cross sections in H + Li, Na
collisions for energies from the thresholds and till 100 eV or 600 eV are performed, and the results are com-
pared with the Landau-Zener model cross sections in both the diabatic and the adiabatic representations.
It is found that the low-energy inelastic cross section is very sensitive to nonadiabatic coupling and, hence,
the new NaH coupling is computed. The numerical solutions of the coupled channel equations are checked
by independent calculations indicating that the quantum results are accurate. These checks are done by
means of the analytic formula for a nonadiabatic transition probability derived within the perturbation
approach. Both the Landau-Zener-like and the non-Landau-Zener-like behaviour of the excitation cross
sections are found.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions – 34.50.Fa
Electronic excitation and ionization of atoms 34.70.+e Charge transfer

1 Introduction

Heavy particle collision processes are of both fundamental
and practical importance in determining the properties of
non-equilibrium gases such as occur in planetary and stel-
lar atmospheres, lasers, and weakly ionized plasmas [1,2].
In few cases the cross sections that are needed to calculate
the excited level population and to interpret the spectral
line data are known. In the great majority of cases, the
required data are not available. Inelastic cross sections can
be obtained from both experiments and numerical calcula-
tions. Experiments on inelastic low-energy (below 1 keV)
atomic collisions are challenging, so atom-atom collisions
have been investigated at low energies only for a small
number of experimentally favorable cases. On the other
hand, although numerical calculations offer no difficulties
in principle [3,4], the number of theoretical papers dealing
with atomic or ionic collisions with energies of a few eV
is small, probably because of the lack of reliable quantum
chemical data.

Inelastic atomic collisions are of importance for the
line formation in non-local thermodynamic equilibrium
models of stellar atmospheres [1,2,5,6]. The construction
of photospheric models is highly tentative, because even
the order of magnitude of the relevant cross sections is
unknown [1,2]. Steenbock and Holweger [5] first pointed
out the possible importance of inelastic collisions of metal
atoms with hydrogen in metal-poor dwarfs. They esti-
mated the collisional excitation rates for X + H by modi-
fying a formula from Drawin [7] for H + H which is itself
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a modification of the classical Thomson formula for exci-
tation by electrons (cf. [1]). In recent years some progress
has been made for the H + Na, Li systems. Low-energy
(between 10 eV and 600 eV) H + Na experimental data
have been obtained [8] and the quantum dynamical cal-
culations for H + Na [9] and H + Li (below 10 eV) [10]
have been performed down to the energy thresholds. It was
found that the modified Drawin formula overestimates the
H + Na(3s) → H + Na(3p) and H + Li(2s) → H + Li(2p)
collision rates by several orders of magnitude [9,10]. Nev-
ertheless, estimates are required for transitions between all
states which might affect the population, and the modi-
fied Drawin formula is still in use amongst the astrophysics
community despite its overestimation of the collision rates.

The alternative to the modified Drawin formula is
the Landau-Zener (LZ) model [11,12] (see also [13]).
This model and its modifications are widely used in the
atomic and molecular physics community. It has been
shown [9,10] that the LZ model gives results much closer
to the quantal ones than the modified Drawin formula. In
the standard version [13], the LZ model is formulated as a
two-state problem in the basis of diabatic states. There ex-
ist different modifications of the Landau-Zener model, e.g.
the multichannel models [14–18], and other nonadiabatic
models [19–22]. The model has been subjected to detailed
analyses [23–25] as well. In practical applications the re-
quirements of the LZ model are seldom fulfilled. Neverthe-
less the LZ model is the most widely used for estimates of
nonadiabatic transition probabilities in its standard two-
state version despite its limitation.
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It should be pointed out that in some phenomena the
excitation cross sections in the energy threshold regions
are of the main interest. For example, in cool star at-
mospheres the temperature range is 2000–8000 K, and
hence the low energy collisions just above the threshold
(0.2–1 eV) are most important in determining the colli-
sion rates for typical optical transitions [1,6]. It is known
that in such the cases, where the cross sections are small,
the standard version of the Landau-Zener model is not re-
liable any more, but it is still in use, which leads to the
questions how large is a deviation of the LZ model cross
sections from the quantal values, how accurate the quantal
cross sections, and how sensitive they are to the quantum
chemical data. Moreover, in practical applications the en-
ergy dependence of the cross section at low-energy colli-
sions can deviate from the behaviour of the cross section
at higher energies. The understanding of origins for such
the deviation is of interest. For this reason in the present
paper the quantal cross sections for the excitation pro-
cesses in H + Li, Na collisions are recalculated within
the two-state treatment and compared with the results of
the standard Landau-Zener model. These collisional sys-
tems are similar. At low energies the nonadiabatic tran-
sitions between the 1Σ+ molecular states dominate over
transitions between other states [9,10]. The main interest
is in transitions between the two lowest molecular states:
X 1Σ+ and A 1Σ+. If the collision energy is high enough,
more than one excited channels can be populated during
the collisions, but at low collision energies the population
of states other than Li(2p) and Na(3p) does not exceed a
few per cents of the total population [9,10]. Thus the two-
state approximation can be adopted with high accuracy.

In the present work an additional check of the quan-
tal calculations is also performed by the independent ap-
proach; this is done within the perturbation theory. The
derived approach allows one to understand the unusual be-
haviour of the H + Na(3s) → H + Na(3p) and H + Li(2s)
→ H + Li(2p) cross sections at low collision energies.

2 Brief theory outlook

2.1 Coupled channel equations

Inelastic transition probabilities and cross sections can be
calculated by solving of coupled channel equations within
the standard adiabatic approach, see, for example, [4,21].
To obtain the equations in the adiabatic representation
one writes the total wave function Ψ for the system as
a sum of terms ΨJ MJ characterized by the total angular
momentum quantum numbers J and MJ (MJ ≥ 0) and
expands the |ΨJ MJ 〉 state in the basis of adiabatic elec-
tronic states |j〉. For the molecular Σ states this expansion
is given by

|ΨJ MJ 〉 = YJMJ (Θ, Φ)
∑

j

Fj(R)
R

|j〉, (1)

where YJ MJ are the spherical harmonics; Θ and Φ are the
spherical coordinate angles of the vector R connecting

the nuclei. In the framework of the standard adiabatic
approach the Jacobi coordinates are used. The functions
Fj(R) describe the radial motion of the nuclei. Substi-
tuting the expansion (1) into the stationary Schrödinger
equation (H − Etot)ΨJ MJ = 0 [H being the total Hamil-
tonian, Etot = E + Vi(∞) being the total energy, Vj(R)
being the adiabatic potential energy for the channel j,
and E being the collision energy], one obtains a set of the
coupled channel equations (CCE) in the adiabatic repre-
sentation [4,9,10,26]
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The adiabatic potentials Vj(R) and single derivative nona-
diabatic matrix elements can be calculated by quantum
chemical programs. The double derivative couplings are
not usually calculated explicitly, but may be estimated
from the single derivative couplings [9]
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The problem can be also solved in a diabatic representa-
tion. In contrast to the adiabatic states |j〉 diabatic states
|jd〉 are not uniquely defined. They can be obtained from
the adiabatic-diabatic unitary transformation or specified
in quantum chemical calculations. The convenient for the
nuclear dynamical treatment choice of the diabatic basis
is such when the single derivative (∂/∂R) matrix elements
disappear at any R. In this case the coupled channel equa-
tions have the form
[
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F d

j (R) =
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HjkF d
k (R), (4)

where Hjk = 〈jd|He|kd〉 are the matrix elements of the
electronic Hamiltonian He in the diabatic representation.
In general, the coupled channel equations in a diabatic
representation have also the single and double derivative
matrix elements in addition to the off-diagonal Hamilto-
nian matrix elements.

The program used in the present work for numerical
integration of the coupled channel equations (2) with the
proper boundary conditions is described in reference [9].
The procedure for extracting the nonadiabatic i → f
transition probabilities Pif from the solution of the cou-
pled channel equations via the outgoing amplitudes or
via the scattering matrix elements is described in refer-
ences [9,10,26,27]. Then the inelastic cross sections are
computed as a sum over the total angular momentum
quantum number J

σif (E) =
π�

2pstat
i

2 M E

∑

J

Pif (J, E) (2J + 1), (5)
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where pstat
i is the statistical probability for population of

the initial channel i and M is the reduced mass of the
collided partners. For both systems under consideration
pstat

i = 1/4 because only the singlet molecular states are
treated. Except for very low energies, a large number of J
values contribute to the cross section, giving J the char-
acter of a quasicontinuous variable. In this case J can be
replaced by the impact parameter b

b = �

√
J(J + 1)

2ME
, (6)

and the inelastic cross section can be computed as the
integral over b

σif (E) = 2πpstat
i

∫ ∞

0

Pif (b, E) b db. (7)

In the present work the coupled channel equations (2) are
solved in the two-channel approximation.

2.2 Perturbation

An additional check of the numerical calculations of the
nonadiabatic transition probabilities and the inelastic
cross sections can be performed based on a perturbation
theory approach. If a system traverses the nonadiabatic
regions mainly adiabatically, which is the result of the
small nonadiabatic couplings, the two-state coupled chan-
nel equations (2) can be solved by means of the perturba-
tion theory approach [28]. Assume that in the asymptotic
R → ∞ region the incoming current entirely populates the
initial i channel and that the nonadiabatic couplings (both
the single and the double derivative matrix elements) are
weak, which means that Ff is small together with F ′

f , and
the right hand side of the corresponding equation for Fi is
negligible. In a first approximation the radial wave func-
tion Fi can be found as a solution of the corresponding
homogeneous differential equation:

Fi ≈ F el
i , (8)

where F el
i is a solution of the equation
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with the proper scattering boundary conditions:

F el
i → 0 as R → 0 (10)

and

F el
i → 1√

ki

[
e−i(kiR+δ) + e+i(kiR+δ)

]
as R → ∞,

(11)
where ki is the channel wave number in the asymptotic
region

ki =

√
2M [Etot − Vi(∞)]

�
. (12)

Then assuming the equation (3) valid, we find that the
radial wave function Ff in the final channel in the asymp-
totic region is proportional to the usual outgoing wave
function F

(+)
f = exp(+i(kfR + δ′))/

√
kf

Ff = AF
(+)
f , (13)

where the amplitude A is equal to

A =
1
2
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and F el
f , the elastic scattering wave function in the final

channel f , is the solution of the equation similar to (9)
with the subscript f instead of i.

Finally, the nonadiabatic transition probability Pif

within the perturbation approach is given by
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(15)
If the nonadiabatic coupling goes to zero in the asymptotic
(R → ∞) region, which is often the case in practical ap-
plications, see, e.g., equation (19) below, then the integral
(14) converges and the formula (15) gives a well defined
transition probability.

Often the radial nonadiabatic couplings go to constant
nonvanishing values at R → ∞, see, e.g., references [26,27]
and references therein. The problem is known as electron
translation. In this case the integral (14) does not con-
verge, and hence the transition probability (15) indicates
an oscillatory behaviour as a function of the upper in-
tegration limit. This is exactly what the accurate quan-
tum dynamical calculations provide [26,27]. In such sit-
uation special care should be taken in order to extract a
transition probability [26,27]. In the two-channel case this
probability can be calculated by averaging the results of
equation (15) over a period of oscillations.

2.3 The Landau-Zener model

The Landau-Zener model is usually formulated as the
two-state problem in the diabatic basis, equations (4),
with constant off-diagonal matrix elements Hif = Hfi

and linear R-dependent diagonal matrix elements Hii and
Hff [13,21]. The LZ model requirements should be ful-
filled at least within a nonadiabatic region. The nonadi-
abatic i → f transition probabilities after a double tra-
verse of the nonadiabatic region and an averaging over
the rapidly oscillating Stückelberg phase reads

Pif (v) = 2 pif (v) [1 − pif (v)], (16)

where v is the radial velocity of the colliding atoms at the
center of the nonadiabatic region Rc, the crossing of the
diabatic potentials, and pif (v) is the nonadiabatic transi-
tion probability after a single traverse of the nonadiabatic
region [13,21]:

pif (v) = exp (−ξ/v) , (17)
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ξ being a parameter of the model. In the diabatic repre-
sentation the LZ parameter is

ξ = ξdi = 2πH2
if/�|H ′

ii − H ′
ff |, (18)

where primed quantities refer to derivatives with respect
to R. All values are evaluated at Rc.

Quantum chemical data are more often obtained in
an adiabatic representation rather than in a diabatic one.
Knowing the 2 × 2 Hamiltonian matrix in a diabatic rep-
resentation, it is easy to calculate adiabatic potentials and
a radial nonadiabatic coupling 〈i|∂/∂R|f〉. Assuming that
the diabatic basis functions are independent of the inter-
nuclear separation one gets the radial nonadiabatic cou-
pling in the Lorentzian form:

〈
i

∣∣∣∣
∂

∂R

∣∣∣∣ f
〉

=
τ

(R − Rc)2 + 4τ2
, (19)

where τ = Hif/|H ′
ii − H ′

ff |. The integral of the nonadia-
batic coupling (19) over R is equal to π/2, which gives a
useful test of applicability of the LZ model. At R = Rc

the absolute value of the nonadiabatic coupling matrix
element has a maximum D = max |〈i|∂/∂R|f〉| and the
splitting of adiabatic potential energies has a minimum
∆V . Finally, one can readily find the relations between
the diabatic and the adiabatic characteristics of the model
at Rc:

Hif = ∆V/2, (20)

|H ′
ii − H ′

ff | = 2 D ∆V. (21)

Substituting equations (20, 21) into the equation (18), one
gets the LZ parameter in the adiabatic representation:

ξ = ξad = π∆V/4�D. (22)

Thus, within the two-state Landau-Zener model the nona-
diabatic transition probability can be evaluated by means
of equations (16, 17) where the LZ parameter is calculated
either in the diabatic representation by equation (18) or in
the adiabatic representation by equation (22). In the exact
Landau-Zener case the results of using different represen-
tations coincide.

3 Results and discussions

3.1 H + Na collisions

Consider first the H + Na collisions. The quantum chem-
ical data for the NaH system are discussed in refer-
ences [9,29–33] and references therein. Both the adiabatic
and diabatic potential energies have been calculated.
The radial nonadiabatic couplings have been computed
by means of the pseudopotential approach [30] and di-
rectly [9] by means of the ab initio multireference single-
and double-excitation configuration interaction (MRD-
CI) method [34,35]. The results of these calculations agree
reasonably with each other.

The most important nonadiabatic region for the exci-
tation process takes place between the X1Σ+ and A1Σ+
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Fig. 1. The nonadiabatic radial coupling between the X1Σ+

and A1Σ+ states of the NaH quasimolecule. The circles are the
MRCI calculations, the solid curve is the MRD-CI coupling [9],
the dashed line is the Lorentzian model (19).

molecular states around R ≈ 7.5 a.u., where the adia-
batic potentials are approaching each other and the cou-
pling has the maximum. As shown below, at low col-
lision energies the inelastic cross section is sensitive to
the fine details of the radial coupling. For this reason in
the present work the new calculations of the X1Σ+ and
A1Σ+ adiabatic potentials and the single derivative ra-
dial coupling between these states are performed in the
framework of MOLPRO [36]. The correlation-consistent
polarized valence-quadruple zeta (cc-pVQZ) basis set for
H atom and the augmented cc-pVTZ basis set for Na atom
have been employed. Using this basis set, a state-averaged
(over the states treated) full-valence complete-active space
self-consistent field (CASSCF) was performed followed by
a multi-reference configuration interaction (MRCI) calcu-
lation. The calculated MRCI potentials agree well with
those of reference [9] shown in Figures 1 and 2 of that pa-
per. The MRCI radial coupling calculated in the present
work is shown in Figure 1 of the present paper by cir-
cles. It is seen that it generally agrees with the MRD-
CI coupling [9] (the solid curve). The main deviation is
in the region of the maximum around R ≈ 7.5 a.u.: the
MRCI coupling has the maximum of D = 0.181 a.u. at
Rc = 7.45 a.u. versus the MRD-CI value of 0.148 a.u.
at 7.35 a.u. [9], that is, 20% larger. Both MRD-CI and
MRCI calculations show that there are 2 broad overlap-
ping nonadiabatic regions between the X1Σ+ and A1Σ+

states: around R ≈ 7.5 a.u. and around R ≈ 1.6 a.u. of
opposite signs. This results in remarkable deviation of the
calculated couplings from the Lorentzian form (19) used
in the LZ model with the parameters obtained below in
the diabatic representation (see the dashed line in Fig. 1).
In particular, the maximum of the Lorentzian form is 40-
70% larger than the maxima of the calculated couplings.
Moreover, the corresponding integral of a CI nonadiabatic
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Fig. 2. The energy dependence of the Na(3s → 3p) excita-
tion cross sections in collisions with the hydrogen atoms. The
thick solid curve is the full quantum calculation [the solution
of the coupled channel Eqs. (2)] with the MRCI nonadiabatic
coupling calculated in the present work. The thin solid curve
is the quantum cross section with the MRD-CI coupling [9].
The dashed and the dot-dashed lines are the LZ model cross
sections in the diabatic and the adiabatic representations, re-
spectively.

coupling over the nonadiabatic region around R ≈ 7.5 a.u.
is about π/4, that is, nearly twice smaller than π/2 ob-
tained from the Lorentzian form (19).

The adiabatic splitting at the center of the nonadia-
batic region is ∆V = 0.0436 a.u. This leads to the LZ
parameter ξad = 0.189 a.u. The diabatic potentials re-
constructed from the adiabatic ones intersect each other
at Rc = 7.6 a.u. and provide Hif = 0.0209 a.u. and
|H ′

ii − H ′
ff | = 0.021 a.u. This gives the LZ parameter

ξdi = 0.130 a.u. This value is in good agreement with
the parameter ξdi = 0.129 a.u. of reference [8]. Refer-
ence [32] displays the diabatic NaH potentials and gives
Rc = 7.83 a.u. and ∆V = 0.0441 a.u., but does not
give |H ′

ii − H ′
ff |, which does not allow us to calculate

ξdi. The estimation gives ξdi ≈ 0.10 a.u. which is close to
the value used in the present paper. For the NaH system
ξad is nearly 50% larger than ξdi, which leads to much
smaller transition probabilities and smaller cross sections
in the adiabatic representation than in the diabatic one.
The point is that the Landau-Zener model assumptions
are not completely fulfilled and, hence, the equation (21)
is not fulfilled. It should be emphasized that ξad is ob-
tained directly from the quantum chemical calculations,
while ξdi is extracted by the usual procedure: from the re-
construction of the diabatic potentials from the adiabatic
ones, not from the adiabatic-diabatic transformation.

In the present work the Na(3s → 3p) + H excitation
cross sections are calculated within the rigorous two-state
quantum dynamical treatment with the new (MRCI) and
the old (MRD-CI [9]) quantum chemical data, as well as

within the LZ model in both the diabatic and the adia-
batic representations. As the MRCI adiabatic potentials
practically do not deviate from the MRD-CI ones, the lat-
ter are employed in both quantum dynamical calculations
in order to show the influence of the radial coupling on the
inelastic cross section. The calculated cross sections from
the energy threshold till 600 eV are shown in Figure 2. It
is seen that at E > 5 eV the quantal cross sections with
the MRD-CI and the MRCI couplings are close to each
other except for the Stückelberg oscillations; the MRCI
cross section is slightly larger the MRD-CI one, which is
the result of the larger MRCI coupling in the nonadiabatic
region around R ≈ 7.5 a.u. At E < 5 eV the relation is in-
verse: the MRD-CI cross section is larger than the MRCI
one up to a factor of 20 in the energy threshold region.
This fact is studied in details below. The narrow peaks of
the cross section just above the energy threshold are the
results of the orbital resonances.

The rigorous quantal cross sections can be compared
with ones obtained within the Landau-Zener model, which
are also depicted in Figure 2. The quantal cross sections
show the oscillatory behaviour, which is the result of the
Stückelberg oscillations. The model calculations do not
have such oscillations as the transition probabilities (16)
are averaged over the Stückelberg phases. There is a large
difference, up to 5 orders of magnitude, in the LZ cross sec-
tions computed in the different representations, especially
at low collision energies. At high energies the difference is
smaller, down to a factor of 2 at E = 600 eV. At the colli-
sion energies under consideration the system traverses the
nonadiabatic region nearly adiabatically, and hence the
LZ model cross section in the diabatic representation is
greater than in the adiabatic one because ξad > ξdi. The
discrepancy between the LZ model cross sections in differ-
ent representations is based on the fact that the LZ model
requirements are not fulfilled in the case treated.

The LZ model cross section in the diabatic representa-
tion agrees with the MRCI quantal result especially for
collision energies E > 10 eV. The energy dependence
of the MRD-CI cross section indicates a Landau-Zener-
like behaviour (an approximate proportionality between
the rigorous and the model cross sections besides the
Stückelberg oscillations) at E > 10 eV. At E < 10 eV
the rigorous cross section shows the non-Landau-Zener-
like behaviour. The origin of the non-Landau-Zener-like
behaviour of the cross sections is discussed below.

The finding that the small variation in the nonadia-
batic coupling leads to large deviation in the cross sec-
tion at low energies is interesting and needs an expla-
nation. For this reason the numerical solutions of the
coupled channel equations (2) are checked by the ana-
lytic formula (15) obtained within the perturbation ap-
proach. The results of this check are shown in Figures 3,
4 and 5, where the Na(3s → 3p) + H transition proba-
bilities multiplied by the impact parameter [that is, the
integrand of the cross section (7)] are depicted as a func-
tion of the impact parameter at E = 10, 5 and 3 eV,
respectively. It is seen from these figures that the transi-
tion probabilities obtained by means of the perturbation
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Fig. 3. The Na(3s → 3p) + H transition probabilities multi-
plied by the impact parameter b as a function of the impact
parameter at E = 10 eV. The thin solid line is the solution of
CCE (2) with the MRD-CI coupling [9]; the dashed line is the
result of the perturbation formula (15) with the same coupling;
the thick solid line is the solution of CCE (2) with the MRCI
coupling; the thin dot-dashed line is the Landau-Zener model
in the diabatic representation; the thick dot-dashed line is the
solution of CCE with the Lorentzian coupling.

formula agree well (typically within 1%) with the solu-
tions of the coupled channel equations. The discrepancy
does not exceed 10% at some impact parameters and at
very low collision energies where the transition probabil-
ities are small (10−6−10−4). This result holds also with
using of the MRCI coupling (not shown in the figures).
This allows us to make the conclusion that the quantal
results are accurate.

Figure 3 shows that at relatively high collision energies
practically the same range of the impact parameter de-
termines the cross sections calculated by different means.
The Stückelberg oscillations are clearly seen in the solu-
tions of CCE with all couplings. The Landau-Zener result
agrees well with the averaged solution of CCE with the
Lorentzian coupling. It is also seen that at high energies
increasing of the radial coupling in the nonadiabatic re-
gion around R ≈ 7.5 a.u. (Fig. 1) increases the transition
probabilities and, hence, the cross section. This result is
understandable from the perturbation formula (15), al-
though it should be pointed out that there is no exact
proportionality between the three couplings treated in the
present case. Note the MRCI transition probabilities are
nearly two times greater than the MRD-CI ones.

Decreasing the collision energy changes the situation.
At E = 5 eV (Fig. 4) the MRD-CI transition probabil-
ities have the same values of magnitude as the MRCI
probabilities and even larger at large impact parame-
ters (b ≈ 3−6 a.u.). This results in practically equal
cross sections, see Figure 2. Further decreasing the energy,
e.g., E = 3 eV, Figure 5, leads to the much larger (an order
of magnitude) MRD-CI probabilities than both the MRCI

0 2 4 6
Impact parameter b (a.u.)

0.0000

0.0002

0.0004

0.0006

T
ra

ns
iti

on
 p

ro
ba

bi
lit

ie
s*

b 
 b

P
(b

) 
(a

.u
.)

CCE MRCI
CCE MRD−CI
Perturb. MRD−CI
LZ model
CCE Lor. model

E = 5 eV

Fig. 4. The Na(3s → 3p) + H transition probabilities mul-
tiplied by the impact parameter as a function of the impact
parameter at E = 5 eV. The notations are the same as in
Figure 3.
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Fig. 5. The Na(3s → 3p) + H transition probabilities mul-
tiplied by the impact parameter as a function of the impact
parameter at E = 3 eV. The notations are the same as in
Figure 3.

and LZ ones. Moreover, considerable contribution in the
quantal cross sections comes from a large impact parame-
ter region where the LZ probabilities are zero, the so-called
grazing incidence. This results in a non-Landau-Zener-like
behaviour of the energy dependence of the quantum cross
sections at low energies, see Figure 2. There are two rea-
sons for this. First, the MRCI and MRD-CI couplings in-
dicate two overlapping nonadiabatic regions, see Figure 1,
which leads to the Rosenthal oscillations (the interference
effect between two nonadiabatic regions). The analyses of
the transition probabilities calculated by means of the per-
turbation formula (15) show that the integrands are oscil-
lating functions, so are the amplitudes (14) as a function
A(Rend) of the upper integration limit Rend with large
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amplitudes of oscillations. If a Lorentzian coupling (19)
is used, then the final amplitude A(Rend → ∞) is much
smaller than the maximum of A(Rend) at an intermediate
Rend. When a radial coupling changes a sign (both the
MRCI and the MRD-CI couplings), the Rosenthal oscil-
lations could provide the final amplitude A(Rend → ∞)
much smaller or much greater (or any value in between)
then the amplitude A with the Lorentzian coupling. For
example, at E = 10 eV the Rosenthal oscillation leads to
the MRD-CI transition probabilities twice smaller than
the MRCI ones (Fig. 3), while at E = 3 eV the MRD-CI
probabilities are by an order of magnitude greater than
the MRCI ones (Fig. 5). In other words, the oscillations
of the A(Rend) amplitude with the MRD-CI coupling are
cut-off by changing of sign of the coupling in such a way
that these oscillations are left uncompensated leading to
a large final amplitude A(Rend → ∞).

The second reason is in the grazing incidence. At low
collision energies and large impact parameters the classi-
cal turning points are close to or even inside the nonadia-
batic region. In this case the standard LZ formula (17) is
not valid, as this formula was obtained under the assump-
tion that classical turning points are far from a nonadia-
batic region. When classical turning points are close to a
nonadiabatic region, the formula for a nonadiabatic transi-
tion has corrections [21,24,37,38] compared with the stan-
dard LZ expression. It is seen from Figure 5 that at graz-
ing incidence the LZ model underestimates the transition
probabilities as compared with the solutions of CCE with
all radial couplings (the MRCI, MRD-CI and Lorentzian
ones). The cut-off in the LZ model is determined by the
positive radial energy with respect to the mean poten-
tial energy at the center of a nonadiabatic region, while
quantum transitions could occur even in the classically
forbidden regions where wave functions are still nonzero.
This explains the influence of the grazing incidence.

Thus, at low collision energies the quantal transition
probabilities and cross sections are very sensitive to the
nonadiabatic coupling. This is not the result of numer-
ics. In the case treated this is the result of the Rosenthal
oscillations.

3.2 H + Li collisions

Consider now the H + Li collisions. The quantum chemi-
cal data (the potential energies and the nonadiabatic cou-
plings) are discussed in detail in references [10,39–42].
Both the diabatic and adiabatic potentials have been
calculated. The radial nonadiabatic couplings have been
computed by numerical differentiation of the configura-
tion interaction coefficients [10] [see Fig. 1 of that paper].
It was shown that most important for the excitation pro-
cess is the nonadiabatic region between the X 1Σ+ and
A 1Σ+ molecular states around R ≈ 7 a.u. The diabatic
potentials cross each other, the adiabatic potentials un-
dergo an avoided crossing, the nonadiabatic coupling has
a form close to Lorentzian (although not exactly), and
the area under the coupling peak is close to π/2. Thus
the Landau-Zener model is expected to be appropriate,
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Fig. 6. The energy dependence of the Li(2s → 2p) excitation
cross sections in collisions with the hydrogen atoms. The solid
line is the full quantum calculation for the LiH(1Σ+) quasi-
molecule. The dashed and the dot-dashed lines are the cross
sections from the Landau-Zener model in the diabatic and the
adiabatic representations, respectively.

despite the inexact linear dependence of the diabatic po-
tentials and the varying off-diagonal matrix elements.

In the diabatic representation the LiH Landau-Zener
parameter is ξdi = 0.145 a.u. at Rc = 7.3 a.u. (Hif =
0.022 a.u., |H ′

ii −H ′
ff | = 0.021 a.u.). In the adiabatic rep-

resentation, when the center of the nonadiabatic region is
defined as the maximum of the nonadiabatic coupling, the
LZ parameter ξad is equal to 0.135 a.u. at Rc = 6.75 a.u.
(∆V = 0.0455 a.u., D = 0.264 a.u.). Besides the small
difference in Rc in the adiabatic and the diabatic repre-
sentations, the deviation of the LZ parameters in different
representation occurs because equation (21) is not exactly
fulfilled, while equation (20) holds approximately. The dif-
ferent LZ parameters lead to some deviation in cross sec-
tions.

In the present work the quantum cross section is cal-
culated by integrating of the two-state coupled channel
equations (2) for the low-energy H + Li collisions (up to
E = 100 eV). The result is shown in Figure 6 by the
solid line and compared with the Landau-Zener cross sec-
tions calculated in both the diabatic and the adiabatic
representations (the dashed and the dot-dashed lines). At
collision energies E > 40 eV the LZ cross sections in
the different representations practically coincide, while at
lower energies there is a difference up to a factor of 5. At
the collision energies under consideration the system tra-
verses the nonadiabatic region nearly adiabatically, which
results in the larger cross section in the adiabatic represen-
tation as ξad < ξdi [see Eq. (17)]. Note the inverse relation
for H + Na collisions. The LZ cross section calculated in
the adiabatic representation agrees better with the rigor-
ous quantum calculation than the cross section computed
in the diabatic basis. The quantal cross section (Fig. 6)
shows the oscillatory behaviour, which is the result of the
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Stückelberg oscillations. The model calculations do not
have such oscillations. The orbital resonances are omitted
in the H + Li cross section calculation. Besides the oscilla-
tions the quantal cross section displays the LZ behaviour
at the collision energies E > 5 eV. At E < 5 eV the quan-
tal cross section deviates from the model calculation up to
an order of magnitude indicating a non-Landau-Zener-like
behaviour of the cross section. The reasons for the devi-
ation are the same as for Na + H collisions: (i) the cal-
culated radial coupling differs from the Lorentzian form
and (ii) the grazing incidence affects the low-energy cross
section. The magnitude of the transition probabilities at
grazing incidence is rather small, around 10−4, and when
the transition probabilities at smaller impact parameters
have much larger values, the contribution from the grazing
incidence is negligible. That is why this effect is significant
at the collision energies just above the energy threshold.

4 Conclusions

In the present work the cross sections for the Li(2s → 2p)
and Na(3s → 3p) electronic excitation by H atom impact
for energies between the thresholds and 100 eV or 600 eV,
respectively, are calculated by means of the full quantum
approach in the two-state approximation, as well as by
means of the standard two-state Landau-Zener model in
both the diabatic and the adiabatic representations. The
new calculations of the X 1Σ+ and A 1Σ+ potentials and
the nonadiabatic radial coupling are performed by means
of the MRCI method for the NaH molecule. These new
data, as well as ones from the previous calculations [9,
10] (for both NaH and LiH) are employed in the dynam-
ical treatment. The results of the numerical integration
of the coupled channel equations are checked by indepen-
dent calculation of nonadiabatic transitions by means of
a simple analytic formula. The formula is derived within
the framework of the perturbation approach. The CCE
and the perturbation results agree well with each other
indicating that the quantum calculations are accurate.

The Landau-Zener model cross sections are computed
for the same transitions in both diabatic and adiabatic
representations. It is found that in practical applications
of the Landau-Zener model the different representations
may give close results (when the Landau-Zener require-
ments are more or less fulfilled) as in H + Li collisions at
relatively high collision energies, but sometimes the results
of using the different representations may deviate substan-
tially from each other, up to several orders of magnitude
as in the H + Na case. It is found that the adiabatic rep-
resentation of the Landau-Zener model may agree with
the accurate quantum dynamical calculations better than
does the diabatic representation (H + Li collisions), and
sometimes the diabatic representation works better than
the adiabatic one (H + Na collisions).

It is shown that at low collision energies the quan-
tum inelastic transition probabilities and cross sections
are very sensitive to the nonadiabatic coupling. The origin
of this sensitivity is in the Rosenthal oscillations between
two overlapping nonadiabatic regions. This effect together

with the grazing incidence lead to a non-Landau-Zener-
like behaviour of inelastic cross sections at low energies (a
few eV above the energy thresholds). At high collision en-
ergies the accurate quantal inelastic cross sections indicate
a Landau-Zener-like behaviour besides the Stückelberg os-
cillations. Thus, the same nonadiabatic region can pro-
vide both Landau-Zener-like and non-Landau-Zener-like
behaviour of the cross section depending on the collision
energy range.
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